Contact
Name: Hend Mahmoud Abdelaleem Allam
Affiliation: Algal Biotechnology and Water Quality Lab – Faculty of Science – Mansoura University
Email: hendallam@mans.edu.eg
Tel: +2010-214-44-812
References
Abdelkarim, O. H., R. A. Verhagen, R. H. Wijffels and M. J. Barbosa (2025). Physiological, biochemical, and morphological responses to nitrogen starvation and biomass-specific photon supply rates of Nannochloropsis oceanica and Microchloropsis gaditana. Journal of Applied Phycology 37(5): 3539-3556.
Ahmad, M., D. Plischke, P. Zuanović and Z. Zorić (2025). Interactive effects of salinity variation and nitrogen deficiency on fatty acids composition in Nannochloropsis. Journal of Applied Phycology 37(5): 3487-3499.
Aizpuru, A. and A. González-Sánchez (2024). Traditional and new trend strategies to enhance pigment contents in microalgae. World Journal of Microbiology and Biotechnology 40(9): 272.
Al-Qasmi, M., N. Raut, S. Talebi, S. Al-Rajhi and T. Al-Barwani (2012). A review of effect of light on microalgae growth. Proceedings of the world congress on engineering.
Ali, H. E. A., E. A. El-fayoumy, W. E. Rasmy, R. M. Soliman and M. A. Abdullah (2021). Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. Journal of Applied Phycology 33(1): 227-239.
Alpural, A., B. Dincoglu, Z. Demirel and E. Imamoglu (2025). Effect of nitrogen on lipid production of Chlorococcum novae-angliae. Systems Microbiology and Biomanufacturing 5(1): 215-222.
Amaral, M. S., C. C. A. Loures, G. A. Pedro, C. E. R. Reis, H. F. De Castro, F. L. Naves, M. B. Silva and A. M. R. Prata (2020). An unconventional two-stage cultivation strategy to increase the lipid content and enhance the fatty acid profile on Chlorella minutissima biomass cultivated in a novel internal light integrated photobioreactor aiming at biodiesel production. Renewable Energy 156: 591-601.
Amini Khoeyi, Z., J. Seyfabadi and Z. Ramezanpour (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae, Chlorella vulgaris. Aquaculture International 20(1): 41-49.
Anand, V., M. Kashyap, A. Ghosh, K. Samadhiya and B. Kiran (2023). A strategy for lipid production in Scenedesmus sp. by multiple stresses induction. Biomass Conversion and Biorefinery 13(4): 3037-3047.
Andreeva, A., E. Budenkova, O. Babich, S. Sukhikh, E. Ulrikh, S. Ivanova, A. Prosekov and V. Dolganyuk (2021) Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins. Molecules 26, DOI: 10.3390/molecules26092767
Anto, S., R. Karpagam, P. Renukadevi, K. Jawaharraj and P. Varalakshmi (2019). Biomass enhancement and bioconversion of brown marine microalgal lipid using heterogeneous catalysts mediated transesterification from biowaste derived biochar and bionanoparticle. Fuel 255: 115789.
Aziz, M. M. A., K. A. Kassim, Z. Shokravi, F. M. Jakarni, H. Y. Liu, N. Zaini, L. S. Tan, A. S. Islam and H. Shokravi (2020). Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review. Renewable and Sustainable Energy Reviews 119: 109621.
Benzie, I. F. and J. J. Strain (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry 239(1): 70-76.
Bhatnagar, P., P. Gururani, M. Nanda, P. Gautam, M. S. Vlaskin, K. K. Jaiswal and V. Kumar (2025). Investigating the Role of GABA (gamma-aminobutyric acid) in Mitigating UV-C Light Exposure on Pseudochlorella pringsheimii Microalgae. Photochemical & Photobiological Sciences: 1-12.
Bialevich, V., V. Zachleder and K. Bišová (2022). The effect of variable light source and light intensity on the growth of three algal species. Cells 11(8): 1293.
Bligh, E. G. and W. J. Dyer (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology 37(8): 911-917.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181(4617): 1199-1200.
Bonente, G., S. Pippa, S. Castellano, R. Bassi and M. Ballottari (2012). Acclimation of Chlamydomonas reinhardtii to different growth irradiances. Journal of Biological Chemistry 287(8): 5833-5847.
Bonnanfant, M., B. Jesus, J. Pruvost, J.-L. Mouget and D. A. Campbell (2019). Photosynthetic electron transport transients in Chlorella vulgaris under fluctuating light. Algal Research 44: 101713.
Borowitzka, M. A. (2016). Algal physiology and large-scale outdoor cultures of microalgae. The physiology of microalgae, Springer: 601-652.
Bunkaew, P. and S. Kongruang (2020). Statistical approach of nutrient optimization for microalgae cultivation. E3S Web of Conferences, EDP Sciences.
Byreddy, A. R., A. Gupta, C. J. Barrow and M. Puri (2016). A quick colorimetric method for total lipid quantification in microalgae. Journal of microbiological methods 125: 28-32.
Calvo, B. O., Á. B. Juárez and M. G. Lagorio (2025). Evaluating photosystem II efficiency in Parachlorella kessleri under atrazine exposure using chlorophyll a fluorescence analysis. Journal of Photochemistry and Photobiology B: Biology: 113167.
Cardoso, L. G., J. dos Santos França, J. S. de Jesus Silva, G. M. dos Santos, P. Q. M. Bezerra, B. B. Andrade, J. C. da Silva, C. O. de Souza, C. Laroche and D. de Jesus Assis (2025). Nitrate (NO₃) limitation in cultivating Monoraphidium griffithii: a strategy for simultaneous production of biomass, lipids, and exopolysaccharides. Journal of Applied Phycology: 1-13.
Chavan, K. J., S. Chouhan, S. Jain, P. Singh, M. Yadav and A. Tiwari (2014). Environmental factors influencing algal biodiesel production. Environmental Engineering Science 31(11): 602-611.
Cheirsilp, B. and S. Torpee (2012). Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource technology 110: 510-516.
Chen, C.-Y., K.-L. Yeh, R. Aisyah, D.-J. Lee and J.-S. Chang (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology 102(1): 71-81.
Chen, H. and Q. Wang (2021). Regulatory mechanisms of lipid biosynthesis in microalgae. Biological Reviews 96(5): 2373-2391.
Chia, S. R., H. C. Ong, K. W. Chew, P. L. Show, S.-M. Phang, T. C. Ling, D. Nagarajan, D.-J. Lee and J.-S. Chang (2018). Sustainable approaches for algae utilisation in bioenergy production. Renewable energy 129: 838-852.
Chin, G. J. W. L., A. R. Andrew, E. R. Abdul-Sani, W. T. L. Yong, M. Misson and A. Anton (2023). The effects of light intensity and nitrogen concentration to enhance lipid production in four tropical microalgae. Biocatalysis and Agricultural Biotechnology 48: 102660.
Chowdury, K. H., N. Nahar and U. K. Deb (2020). The growth factors involved in microalgae cultivation for biofuel production: a review. Computational Water, Energy, and Environmental Engineering 9(4): 185-215.
Chunzhuk, E. A., A. V. Grigorenko, S. V. Kiseleva, N. I. Chernova, M. S. Vlaskin, K. G. Ryndin, A. V. Butyrin, G. N. Ambaryan and A. O. Dudoladov (2023). Effects of light intensity on the growth and biochemical composition in various microalgae grown at high CO2 concentrations. Plants 12(22): 3876.
Corrêa, P. S., M. M. Freitas and N. S. Caetano (2025). High-value compounds in three freshwater green microalgae using nitrogen as an abiotic stressor: A study of the antioxidant potential of ethanolic extracts. Algal Research 86: 103964.
Cosgrove, J. and M. A. Borowitzka (2010). Chlorophyll Fluorescence Terminology: An Introduction. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. D. J. Suggett, O. Prášil and M. A. Borowitzka. Dordrecht, Springer Netherlands: 1-17.
Deason, T. R. and H. C. Bold (1960). Phycological studies, University of Texas.
Devkota, S. and D. G. Durnford (2025). Photoacclimation strategies of Chlamydomonas reinhardtii in response to high-light stress in stationary phase. Journal of Photochemistry and Photobiology B: Biology 262: 113082.
Dolganyuk, V., D. Belova, O. Babich, A. Prosekov, S. Ivanova, D. Katserov, N. Patyukov and S. Sukhikh (2020). Microalgae: A promising source of valuable bioproducts. Biomolecules 10(8): 1153.
DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry 28(3): 350-356.
El-Sheekh, M. M., H. R. Galal, A. S. H. H. Mousa and A. A. M. Farghl (2024). Impact of macronutrients and salinity stress on biomass and biochemical constituents in Monoraphidium braunii to enhance biodiesel production. Scientific Reports 14(1): 2725.
Esteves, A. F., A. L. Gonçalves, V. J. Vilar and J. C. Pires (2024). Comparative assessment of microalgal growth kinetic models based on light intensity and biomass concentration. Bioresource Technology 394: 130167.
Esteves, A. F., E. M. Salgado, V. J. Vilar, A. L. Gonçalves and J. C. Pires (2024). A growth phase analysis on the influence of light intensity on microalgal stress and potential biofuel production. Energy Conversion and Management 311: 118511.
Faé Neto, W. A., C. R. Borges Mendes and P. C. Abreu (2018). Carotenoid production by the marine microalgae Nannochloropsis oculata in different low‐cost culture media. Aquaculture research 49(7): 2527-2535.
Faraloni, C., T. Di Lorenzo and A. Bonetti (2021). Impact of light stress on the synthesis of both antioxidants polyphenols and carotenoids, as fast photoprotective response in Chlamydomonas reinhardtii: new prospective for biotechnological potential of this microalga. Symmetry 13(11): 2220.
Ge, D., Y. Luo, R. Zhang, X. Hu and L. Ren (2025). Effect of light stress on the production of lipid compounds by Schizochytrium sp. and its underlying mechanism. Blue Biotechnology 2(1): 8.
Gebremariam, S. N. and J. M. Marchetti (2018). Economics of biodiesel production. Energy conversion and management 168: 74-84.
George, B., I. Pancha, C. Desai, K. Chokshi, C. Paliwal, T. Ghosh and S. Mishra (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–A potential strain for bio-fuel production. Bioresource technology 171: 367-374.
Gonçalves, A., M. Simões and J. Pires (2014). The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Conversion and Management 85: 530-536.
Guccione, A., N. Biondi, G. Sampietro, L. Rodolfi, N. Bassi and M. R. Tredici (2014). Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnology for Biofuels 7(1): 84.
Guedes, A. C., H. M. Amaro, M. S. Gião and F. X. Malcata (2013). Optimization of ABTS radical cation assay specifically for determination of antioxidant capacity of intracellular extracts of microalgae and cyanobacteria. Food Chemistry 138(1): 638-643.
Guermazi, W., S. Masmoudi, S. Boukhris, H. Ayadi and A. Morant-Manceau (2014). Under low irradiation, the light regime modifies growth and metabolite production in various species of microalgae. Journal of Applied Phycology 26(6): 2283-2293.
Guillard, R. R. and M. S. Sieracki (2005). Counting cells in cultures with the light microscope. Algal culturing techniques: 239-252.
Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical society transactions 35(5): 1147-1150.
Hang, L. T., K. Mori, Y. Tanaka, M. Morikawa and T. Toyama (2020). Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses. Bioprocess and Biosystems Engineering 43(6): 971-980.
He, Q., H. Yang, L. Wu and C. Hu (2015). Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresource Technology 191: 219-228.
Hu, W. (2014). Dry weight and cell density of individual algal and cyanobacterial cells for algae. University of Missouri Columbia, Columbia.
Huang, Z. N., S. Pannerchelvan, M. Halim, N. A. Kasan, J. S. Tan and M. S. Mohamed (2026). Boosting biomass and superoxide dismutase yield in Tetraselmis chuii via two-stage cultivation and adaptive laboratory evolution. Bioprocess and Biosystems Engineering.
Humphrey, A. M. (1980). Chlorophyll. Food Chemistry 5(1): 57-67.
Janka, E., I. Umetani, M. Sposob and R. Bakke (2020). Photosynthesis response of microalgae (Tetradesmus wisconsinensis) to different inorganic carbon sources probed with chlorophyll fluorescence analysis. Photosynthetica 58.
Japar, A. S., M. S. Takriff and N. H. M. Yasin (2021). Microalgae acclimatization in industrial wastewater and its effect on growth and primary metabolite composition. Algal Research 53: 102163.
Jayakumar, S., P. Bhuyar, A. Pugazhendhi, M. H. A. Rahim, G. P. Maniam and N. Govindan (2021). Effects of light intensity and nutrients on the lipid content of marine microalga (diatom) Amphiprora sp. for promising biodiesel production. Science of the Total Environment 768: 145471.
Juneja, A., R. M. Ceballos and G. S. Murthy (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6(9): 4607-4638.
Kaur, M., K. C. Saini, H. Ojah, R. Sahoo, K. Gupta, A. Kumar and F. Bast (2022). Abiotic stress in algae: response, signaling and transgenic approaches. Journal of Applied Phycology 34(4): 1843-1869.
Kenny, O., N. P. Brunton and T. J. Smyth (2015). In vitro protocols for measuring the antioxidant capacity of algal extracts. Natural products from marine algae: Methods and protocols, Springer: 375-402.
Kim, T.-H., K. Lee, B.-R. Oh, M.-E. Lee, M. Seo, S. Li, J.-K. Kim, M. Choi and Y. K. Chang (2021). A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101. Renewable Energy 165: 481-490.
Kiran, B. R. and S. V. Mohan (2021). Photosynthetic transients in Chlorella sorokiniana during phycoremediation of dairy wastewater under distinct light intensities. Bioresource Technology 340: 125593.
Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547-1549.
Levasseur, W., P. Perré and V. Pozzobon (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances 41: 107545.
Liang, L., Z. Wang, Y. Ding, Y. Li and X. Wen (2023). Protein reserves elucidate the growth of microalgae under nitrogen deficiency. Algal Research 75: 103269.
Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology, Elsevier. 148: 350-382.
Liu, Y., D. Wei, W. N. Chen and Z. Li (2025). Enhanced CO2-to-lipid bioconversion in oleaginous Coccomyxa subellipsoidea by high light intensity: A comprehensive analysis of photosynthesis and carbon allocation. Renewable Energy: 123728.
Liyanaarachchi, V. C., G. K. S. H. Nishshanka, R. G. M. M. Premaratne, T. U. Ariyadasa, P. H. V. Nimarshana and A. Malik (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports 28: e00538.
Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall (1951). Protein measurement with the Folin phenol reagent. J biol Chem 193(1): 265-275.
Maltsev, Y., K. Maltseva, M. Kulikovskiy and S. Maltseva (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology 10(10): 1060.
Masojídek, J., A. Vonshak and G. Torzillo (2010). Chlorophyll Fluorescence Applications in Microalgal Mass Cultures. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications. D. J. Suggett, O. Prášil and M. A. Borowitzka. Dordrecht, Springer Netherlands: 277-292.
Metsoviti, M. N., G. Papapolymerou, I. T. Karapanagiotidis and N. Katsoulas (2019). Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants 9(1): 31.
Miller, N. J., C. Rice-Evans, M. J. Davies, V. Gopinathan and A. Milner (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical science (London, England: 1979) 84(4): 407-412.
Mogany, T., V. Bhola, L. Ramanna and F. Bux (2022). Photosynthesis and pigment production: elucidation of the interactive effects of nutrients and light on Chlamydomonas reinhardtii. Bioprocess and Biosystems Engineering 45(1): 187-201.
Monteiro, I., L. M. Schüler, E. Santos, H. Pereira, P. S. C. Schulze, C. Florindo, J. Varela and L. Barreira (2023). Two-stage lipid induction in the microalga Tetraselmis striata CTP4 upon exposure to different abiotic stresses. Renewable Energy 208: 693-701.
Montes-González, O., A. González-Silvera, E. Valenzuela-Espinoza, E. Santamaría-del-Ángel and J. López-Calderón (2021). Effect of light intensity and nutrient concentration on growth and pigments of the green microalga Tetraselmis suecica. Latin american journal of aquatic research 49(3): 431-441.
Murata, N., S. Takahashi, Y. Nishiyama and S. I. Allakhverdiev (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1767(6): 414-421.
Mutanda, T., D. Ramesh, S. Karthikeyan, S. Kumari, A. Anandraj and F. Bux (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource technology 102(1): 57-70.
Nezafatian, E., O. Farhadian, E. Daneshvar and A. Bhatnagar (2024). Investigating the effects of salinity and light stresses on primary and secondary metabolites of Tetraselmis tetrathele: Total phenolic compounds, fatty acid profile, and biodiesel properties. Biomass and Bioenergy 181: 107050.
Nicodemou, A., D. Konstantinou and M. Koutinas (2024). Enhanced biomass and lipid production from olive processing wastewater using Scenedesmus obliquus in a two-stage cultivation strategy under salt stress. Biochemical Engineering Journal 205: 109290.
Nzayisenga, J. C., X. Farge, S. L. Groll and A. Sellstedt (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for biofuels 13(1): 4.
Pancha, I., K. Chokshi and S. Mishra (2015). Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology 179: 565-572.
Pessoa, J. d. S., A. C. O. d. Almeida, L. F. d. Santos, T. M. d. Oliveira, C. C. Martins, W. G. Matias and S. P. Melegari (2025). Optical Insight: Spectrophotometry as a Tool to Quantify Cell Density of Green Microalgae in Suspension, with Emphasis on Growing Conditions and Toxicological Evaluations. Bulletin of Environmental Contamination and Toxicology 114(2): 21.
Petroleum, B. (2020). Statistical review of world energy 2021. URL: https://www. bp. com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2021-full-report. pdf.
Piorreck, M., K.-H. Baasch and P. Pohl (1984). Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23(2): 207-216.
Prieto, P., M. Pineda and M. Aguilar (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry 269(2): 337-341.
Qiao, T., Y. Zhao, D.-b. Zhong and X. Yu (2021). Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Research 53: 102017.
Rahimi, M., P. A. Webley, G. J. Martin and R. Halim (2025). Nitrogen starvation for fuel production from Nannochloropsis: A trade-off between calorific lipid accumulation and energy loss for cell disruption. Chemical Engineering Journal Advances: 100812.
Ravi Kiran, B. and S. Venkata Mohan (2021). Photosynthetic transients in Chlorella sorokiniana during phycoremediation of dairy wastewater under distinct light intensities. Bioresource Technology 340: 125593.
Rayati, M., H. Rajabi Islami and M. Shamsaie Mehrgan (2020). Light intensity improves growth, lipid productivity, and fatty acid profile of Chlorococcum oleofaciens (Chlorophyceae) for biodiesel production. BioEnergy Research 13(4): 1235-1245.
Recht, L., A. Zarka and S. Boussiba (2012). Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Applied Microbiology and Biotechnology 94(6): 1495-1503.
Rym, B. D. (2012). Photosynthetic behavior of microalgae in response to environmental factors. Applied Photosynthesis: 23-46.
Scharff, C., N. Domurath, M. Wensch-Dorendorf and F.-G. Schröder (2015). Effect of different photoperiods on the biochemical profile of the green algae C. vulgaris and S. obliquus. International Symposium on New Technologies and Management for Greenhouses-GreenSys2015 1170.
Seo, S.-H., J.-S. Ha, C. Yoo, A. Srivastava, C.-Y. Ahn, D.-H. Cho, H.-J. La, M.-S. Han and H.-M. Oh (2017). Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat. Bioresource Technology 244: 621-628.
Shankar, U., S. K. Lenka, M. L. Ackland and D. L. Callahan (2025). Flashing white light stimulates enhanced growth, pigment and fatty acid accumulation in microalgae under high-intensity illumination cycles. Algal Research: 104224.
Shekh, A., A. Sharma, P. M. Schenk, G. Kumar and S. Mudliar (2022). Microalgae cultivation: photobioreactors, CO2 utilization, and value‐added products of industrial importance. Journal of Chemical Technology & Biotechnology 97(5): 1064-1085.
Singh, R. P., P. Yadav, A. Kumar, A. Hashem, G. D. Avila-Quezada, E. F. Abd_Allah and R. K. Gupta (2023) Salinity-Induced Physiochemical Alterations to Enhance Lipid Content in Oleaginous Microalgae Scenedesmus sp. BHU1 via Two-Stage Cultivation for Biodiesel Feedstock. Microorganisms 11, 2064 DOI: 10.3390/microorganisms11082064
Singh, S. P. and P. Singh (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and sustainable energy reviews 50: 431-444.
Singleton, V. L. and J. A. Rossi (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16(3): 144-158.
Song, D., B. Xi and J. Sun (2016). Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. Journal of Ocean University of China 15(1): 124-130.
Song, X., F. Kong, B.-F. Liu, Q. Song, N.-Q. Ren and H.-Y. Ren (2025). Enhancement of microalgae lipid production under multiple stressors and tetracycline and heavy metal removal in semi-continuous operation. Chemical Engineering Journal 511: 162002.
Song, X., B.-F. Liu, F. Kong, N.-Q. Ren and H.-Y. Ren (2022). Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resources, Conservation and Recycling 183: 106355.
Taher, H., S. Al-Zuhair, A. Al-Marzouqi, Y. Haik and M. Farid (2015). Growth of microalgae using CO2 enriched air for biodiesel production in supercritical CO2. Renewable Energy 82: 61-70.
Tarazona Delgado, R., M. d. S. Guarieiro, P. W. Antunes, S. T. Cassini, H. M. Terreros and V. d. O. Fernandes (2021). Effect of nitrogen limitation on growth, biochemical composition, and cell ultrastructure of the microalga Picocystis salinarum. Journal of Applied Phycology 33(4): 2083-2092.
Urrutia Molina, C., M. E. González Quijón, E. Yañez, C. R. Navarro, C. Rodríguez-Villegas and D. Silva (2025). Harnessing the potential of Chlorella vulgaris in salmon industry wastewater treatment: The role of salinity type in optimizing biorefinery processes. Algal Research 88: 103999.
Wang, M., X. Ye, H. Bi and Z. Shen (2024). Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities. Biotechnology for Biofuels and Bioproducts 17(1): 10.
Wang, X., S. Esakkimuthu, C. Yuan, H. Chen, H. S. El-Mesery, S. Wang and X. Hu (2025). Two-stage cultivation using noodle soup waste water for the sustainable production of microalgal biomass and biodiesel. Journal of Cleaner Production 523: 146438.
Xiao, X., Y. Zhou, Z. Liang, R. Lin, M. Zheng, B. Chen and Y. He (2022). A novel two-stage heterotrophic cultivation for starch-to-protein switch to efficiently enhance protein content of Chlorella sp. MBFJNU-17. Bioresource Technology 344: 126187.
Yamaoka, Y., D. Petroutsos, S. Je, T. Yamano and Y. Li-Beisson (2025). Light, CO2, and carbon storage in microalgae. Current Opinion in Plant Biology 84: 102696.
Yan, X., C. Kiki, Z. Xu, H. P. Manzi, A. Rashid, T. Chen and Q. Sun (2024). Comparative growth inhibition of 6PPD and 6PPD-Q on microalgae Selenastrum capricornutum, with insights into 6PPD-induced phototoxicity and oxidative stress. Science of The Total Environment 957: 177627.
Yang, M., C. Xue, L. Li, Z. Gao, Q. Liu, P. Qian, J. Dong and K. Gao (2022). Design and performance of a low-cost microalgae culturing system for growing Chlorella sorokiniana on cooking cocoon wastewater. Algal Research 62: 102607.
Young, E. B. and J. Beardall (2003). Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. Journal of phycology 39(5): 897-905.
Zhang, R., Z. Kong, S. Chen, Z. Ran, M. Ye, J. Xu, C. Zhou, K. Liao, J. Cao and X. Yan (2017). The comparative study for physiological and biochemical mechanisms of Thalassiosira pseudonana and Chaetoceros calcitrans in response to different light intensities. Algal research 27: 89-98.
Zhao, T., M. Liu, T. Zhao, A. Chen, L. Zhang, H. Liu, K. Ding and P. Xiao (2021). Enhancement of lipid productivity in Chlorella pyrenoidosa by collecting cells at the maximum cell number in a two-stage culture strategy. Algal Research 55: 102278.
Zhou, Q., P. Zhang and G. Zhang (2014). Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity. Bioresource Technology 171: 330-335.
